Thermal Power Plant Schematic

Thermal Power Plant Schematic Diagram:

Typical diagram of a coal-fired thermal power station
1. Cooling tower 10. Steam Control valve 19. Superheater
2. Cooling water pump 11. High pressure steam turbine 20. Forced draught (draft) fan
3. transmission line (3-phase) 12. Deaerator 21. Reheater
4. Step-up transformer (3-phase) 13. Feedwater heater 22. Combustion air intake
5. Electrical generator (3-phase) 14. Coal conveyor 23. Economiser
6. Low pressure steam turbine 15. Coal hopper 24. Air preheater
7. Condensate pump 16. Coal pulverizer 25. Precipitator
8. Surface condenser 17. Boiler steam drum 26. Induced draught (draft) fan
9. Intermediate pressure steam turbine 18. Bottom ash hopper 27. Flue gas stack

Thermal Power Plant Efficiency

Power is energy per unit time. The power output or capacity of an electric plant can be expressed in units of megawatts electric (MWe). The electric efficiency of a conventional thermal power plant, considered as saleable energy (in MWe) produced at the plant busbars as a percent of the heating value of the fuel consumed, is typically 33% to 48% efficient. This efficiency is limited as all heat engines are governed by the laws of thermodynamics (See: Carnot cycle). The rest of the energy must leave the plant in the form of heat. This waste heat can go through a condenser and be disposed of with cooling water or in cooling towers. If the waste heat is instead utilized for district heating, it is called cogeneration. An important class of thermal power station are associated with desalination facilities; these are typically found in desert countries with large supplies of natural gas and in these plants, freshwater production and electricity are equally important co-products.

Since the efficiency of the plant is fundamentally limited by the ratio of the absolute temperatures of the steam at turbine input and output, efficiency improvements require use of higher temperature, and therefore higher pressure, steam. Historically, other working fluids such as mercury have been experimentally used in a mercury vapour turbine power plant, since these can attain higher temperatures than water at lower working pressures. However, the obvious hazards of toxicity, and poor heat transfer properties, have ruled out mercury as a working fluid.

List of Solar Thermal Power Plants

This is a list of solar thermal power plants. These include the 354 megawatt (MW) Solar Energy Generating Systems power plant in the USA, Nevada Solar One (USA, 64 MW), Andasol solar power station (Spain, 100 MW), PS20 solar power tower (Spain, 20 MW), and the PS10 solar power tower (Spain, 11 MW).

The solar thermal power industry is growing rapidly with 1.2 GW under construction as of April 2009 and another 13.9 GW announced globally through 2014. Spain is the epicenter of solar thermal power development with 22 projects for 1,037 MW under construction, all of which are projected to come online by the end of 2010. In the United States, 5,600 MW of solar thermal power projects have been announced. In developing countries, three World Bank projects for integrated solar thermal/combined-cycle gas-turbine power plants in Egypt, Mexico, and Morocco have been approved.

Operational Solar Thermal Power Stations
Technology type Name Country Location Notes
736.15 - Overall operational capacity - - -
354 parabolic trough Solar Energy Generating Systems USA Mojave Desert California Collection of 9 units
100 parabolic trough Andasol solar power station Spain Granada Andasol 1 completed, 2008
Andasol 2 completed, 2009

64 parabolic trough Nevada Solar One USA Boulder City, Nevada
50 parabolic trough Puertollano Photovoltaic Park Spain Puertollano, Ciudad Real Completed May 2009
50 parabolic trough Alvarado I Spain Badajoz Completed July 2009
50 parabolic trough Extresol 1 Spain Torre de Miguel Sesmero (Badajoz) Completed February 2010
50 parabolic trough Solnova Spain Seville
20 solar power tower PS20 solar power tower Spain Seville Completed April 2009
17 parabolic trough Yazd integrated solar combined cycle power station Iran Yazd World's first solar combined cycle power plant
11 solar power tower PS10 solar power tower Spain Seville World's first
commercial solar tower
5 fresnel reflector Kimberlina Solar Thermal Energy Plant USA Bakersfield, California Ausra demonstration
5 solar power tower Sierra SunTower USA Lancaster, California eSolar commercial power plant, North America's only operating solar tower, completed August 2009
2 fresnel reflector Liddell Power Station Solar Steam Generator Australia New South Wales electrical equivalent steam boost for coal station
2 parabolic trough Keahole Solar Power USA Hawaii
1.5 dish stirling Maricopa Solar USA Peoria, Arizona Stirling Energy Systems / Tessera Solar's first commercial-scale Dish Stirling power plant. Completed January 2010
1.5 solar power tower Jülich Solar Tower Germany Jülich Completed December 2008
1.4 solar power tower THEMIS Solar Power Tower France Pyrénées-Orientales Hybrid solar/gas electric power, using solar energy to heat the air entering a gas turbine
1.4 fresnel reflector Puerto Errado 1 Spain Murcia Completed April 2009
1 parabolic trough Saguaro Solar Power Station USA Red Rock Arizona
0.25 CSP Shiraz solar power plant Iran Shiraz Iran's first solar power plant

Steam Turbine Driven Electric Generator

The steam turbine-driven generators have auxiliary systems enabling them to work satisfactorily and safely. The steam turbine generator being rotating equipment generally has a heavy, large diameter shaft. The shaft therefore requires not only supports but also has to be kept in position while running. To minimise the frictional resistance to the rotation, the shaft has a number of bearings. The bearing shells, in which the shaft rotates, are lined with a low friction material like Babbitt metal. Oil lubrication is provided to further reduce the friction between shaft and bearing surface and to limit the heat generated.

Barring gear

Barring gear (or "turning gear") is the mechanism provided to rotate the turbine generator shaft at a very low speed after unit stoppages. Once the unit is "tripped" (i.e., the steam inlet valve is closed), the turbine coasts down towards standstill. When it stops completely, there is a tendency for the turbine shaft to deflect or bend if allowed to remain in one position too long. This is because the heat inside the turbine casing tends to concentrate in the top half of the casing, making the top half portion of the shaft hotter than the bottom half. The shaft therefore could warp or bend by millionths of inches.

This small shaft deflection, only detectable by eccentricity meters, would be enough to cause damaging vibrations to the entire steam turbine generator unit when it is restarted. The shaft is therefore automatically turned at low speed (about one percent rated speed) by the barring gear until it has cooled sufficiently to permit a complete stop.


The surface condenser is a shell and tube heat exchanger in which cooling water is circulated through the tubes. The exhaust steam from the low pressure turbine enters the shell where it is cooled and converted to condensate (water) by flowing over the tubes as shown in the adjacent diagram. Such condensers use steam ejectors or rotary motor-driven exhausters for continuous removal of air and gases from the steam side to maintain vacuum.

For best efficiency, the temperature in the condenser must be kept as low as practical in order to achieve the lowest possible pressure in the condensing steam. Since the condenser temperature can almost always be kept significantly below 100 °C where the vapor pressure of water is much less than atmospheric pressure, the condenser generally works under vacuum. Thus leaks of non-condensible air into the closed loop must be prevented. Plants operating in hot climates may have to reduce output if their source of condenser cooling water becomes warmer; unfortunately this usually coincides with periods of high electrical demand for air conditioning.

The condenser generally uses either circulating cooling water from a cooling tower to reject waste heat to the atmosphere, or once-through water from a river, lake or ocean.

Feedwater heater

In the case of a conventional steam-electric power plant utilizing a drum boiler, the surface condenser removes the latent heat of vaporization from the steam as it changes states from vapour to liquid. The heat content (joules or Btu) in the steam is referred to as enthalpy. The condensate pump then pumps the condensate water through a feedwater heater. The feedwater heating equipment then raises the temperature of the water by utilizing extraction steam from various stages of the turbine.

Preheating the feedwater reduces the irreversibilities involved in steam generation and therefore improves the thermodynamic efficiency of the system. This reduces plant operating costs and also helps to avoid thermal shock to the boiler metal when the feedwater is introduced back into the steam cycle.


As the steam is conditioned by the drying equipment inside the drum, it is piped from the upper drum area into an elaborate set up of tubing in different areas of the boiler. The areas known as superheater and reheater. The steam vapor picks up energy and its temperature is now superheated above the saturation temperature. The superheated steam is then piped through the main steam lines to the valves of the high pressure turbine.


A steam generating boiler requires that the boiler feed water should be devoid of air and other dissolved gases, particularly corrosive ones, in order to avoid corrosion of the metal.

Generally, power stations use a deaerator to provide for the removal of air and other dissolved gases from the boiler feedwater. A deaerator typically includes a vertical, domed deaeration section mounted on top of a horizontal cylindrical vessel which serves as the deaerated boiler feedwater storage tank.

There are many different designs for a deaerator and the designs will vary from one manufacturer to another. The adjacent diagram depicts a typical conventional trayed deaerator. If operated properly, most deaerator manufacturers will guarantee that oxygen in the deaerated water will not exceed 7 ppb by weight (0.005 cm³/L).

Auxiliary systems

Oil system

An auxiliary oil system pump is used to supply oil at the start-up of the steam turbine generator. It supplies the hydraulic oil system required for steam turbine's main inlet steam stop valve, the governing control valves, the bearing and seal oil systems, the relevant hydraulic relays and other mechanisms.

At a preset speed of the turbine during start-ups, a pump driven by the turbine main shaft takes over the functions of the auxiliary system.

Generator heat dissipation

The electricity generator requires cooling to dissipate the heat that it generates. While small units may be cooled by air drawn through filters at the inlet, larger units generally require special cooling arrangements. Hydrogen gas cooling, in an oil-sealed casing, is used because it has the highest known heat transfer coefficient of any gas and for its low viscosity which reduces windage losses. This system requires special handling during start-up, with air in the chamber first displaced by carbon dioxide before filling with hydrogen. This ensures that the highly flammable hydrogen does not mix with oxygen in the air.

The hydrogen pressure inside the casing is maintained slightly higher than atmospheric pressure to avoid outside air ingress. The hydrogen must be sealed against outward leakage where the shaft emerges from the casing. Mechanical seals around the shaft are installed with a very small annular gap to avoid rubbing between the shaft and the seals. Seal oil is used to prevent the hydrogen gas leakage to atmosphere.

The generator also uses water cooling. Since the generator coils are at a potential of about 22 kV and water is conductive, an insulating barrier such as Teflon is used to interconnect the water line and the generator high voltage windings. Demineralized water of low conductivity is used.

Generator high voltage system

The generator voltage ranges from 11 kV in smaller units to 22 kV in larger units. The generator high voltage leads are normally large aluminum channels because of their high current as compared to the cables used in smaller machines. They are enclosed in well-grounded aluminum bus ducts and are supported on suitable insulators. The generator high voltage channels are connected to step-up transformers for connecting to a high voltage electrical substation (of the order of 115 kV to 520 kV) for further transmission by the local power grid.

The necessary protection and metering devices are included for the high voltage leads. Thus, the steam turbine generator and the transformer form one unit. In smaller units, generating at 11 kV, a breaker is provided to connect it to a common 11 kV bus system.

Thermal Power Plant Classification

Thermal power plants are classified by the type of fuel and the type of prime mover installed.

By fuel

  • Nuclear power plants use a nuclear reactor's heat to operate a steam turbine generator. About 20% of electric generation in the USA is produced by nuclear power plants.
  • Fossil fuelled power plants may also use a steam turbine generator or in the case of natural gas fired plants may use a combustion turbine. A coal-fired power station produces electricity by burning coal to generate steam, and has the side-effect of producing a large amount of carbon dioxide, which is released from burning coal and contributes to global warming. About 50% of electric generation in the USA is produced by coal fired power plants
  • Geothermal power plants use steam extracted from hot underground rocks.
  • Renewable energy plants or Biomass Fuelled Power Plants may be fuelled by waste from sugar cane, municipal solid waste, landfill methane, or other forms of biomass.
  • In integrated steel mills, blast furnace exhaust gas is a low-cost, although low-energy-density, fuel.
  • Waste heat from industrial processes is occasionally concentrated enough to use for power generation, usually in a steam boiler and turbine.
  • Solar thermal electric plants use sunlight to boil water, which turns the generator.

By prime mover

  • Steam turbine plants use the dynamic pressure generated by expanding steam to turn the blades of a turbine. Almost all large non-hydro plants use this system. About 80% of all electric power produced in the world is by use of steam turbines.
  • Gas turbine plants use the dynamic pressure from flowing gases (air and combustion products) to directly operate the turbine. Natural-gas fuelled (and oil fueled) combustion turbine plants can start rapidly and so are used to supply "peak" energy during periods of high demand, though at higher cost than base-loaded plants. These may be comparatively small units, and sometimes completely unmanned, being remotely operated. This type was pioneered by the UK, Princetown being the world's first, commissioned in 1959.
  • Combined cycle plants have both a gas turbine fired by natural gas, and a steam boiler and steam turbine which use the hot exhaust gas from the gas turbine to produce electricity. This greatly increases the overall efficiency of the plant, and many new baseload power plants are combined cycle plants fired by natural gas.
  • Internal combustion Reciprocating engines are used to provide power for isolated communities and are frequently used for small cogeneration plants. Hospitals, office buildings, industrial plants, and other critical facilities also use them to provide backup power in case of a power outage. These are usually fuelled by diesel oil, heavy oil, natural gas and landfill gas.
  • Microturbines, Stirling engine and internal combustion reciprocating engines are low-cost solutions for using opportunity fuels, such as landfill gas, digester gas from water treatment plants and waste gas from oil production.

Steam Generator of Thermal Power Plant

In fossil-fueled power plants, steam generator refers to a furnace that burns the fossil fuel to boil water to generate steam. In the nuclear power plant field, steam generator refers to a specific type of large heat exchanger used in a pressurized water reactor (PWR) to thermally connect the primary (reactor plant) and secondary (steam plant) systems, which of course is used to generate steam. In a nuclear reactor called a boiling water reactor (BWR), water is boiled to generate steam directly in the reactor itself and there are no units called steam generators. In some industrial settings, there can also be steam-producing heat exchangers called heat recovery steam generators (HRSG) which utilize heat from some industrial process. The steam generating boiler has to produce steam at the high purity, pressure and temperature required for the steam turbine that drives the electrical generator. A fossil fuel steam generator includes an economizer, a steam drum, and the furnace with its steam generating tubes and superheater coils. Necessary safety valves are located at suitable points to avoid excessive boiler pressure. The air and flue gas path equipment include: forced draft (FD) fan, air preheater (APH), boiler furnace, induced draft (ID) fan, fly ash collectors (electrostatic precipitator or baghouse) and the flue gas stack.

Geothermal power plants need no boiler since they use naturally occurring steam sources. Heat exchangers may be used where the geothermal steam is very corrosive or contains excessive suspended solids. Nuclear plants also boil water to raise steam, either directly generating steam from the reactor (BWR) or else using an intermediate heat exchanger (PWR).

For units over about 200 MW capacity, redundancy of key components is provided by installing duplicates of the FD fan, APH, fly ash collectors and ID fan with isolating dampers. On some units of about 60 MW, two boilers per unit may instead be provided.

Boiler furnace and steam drum

Once water inside the boiler or steam generator, the process of adding the latent heat of vaporization or enthalpy is underway. The boiler transfers energy to the water by the chemical reaction of burning some type of fuel.

The water enters the boiler through a section in the convection pass called the economizer. From the economizer it passes to the steam drum. Once the water enters the steam drum it goes down the downcomers to the lower inlet waterwall headers. From the inlet headers the water rises through the waterwalls and is eventually turned into steam due to the heat being generated by the burners located on the front and rear waterwalls (typically). As the water is turned into steam/vapor in the waterwalls, the steam/vapor once again enters the steam drum. The steam/vapor is passed through a series of steam and water separators and then dryers inside the steam drum. The steam separators and dryers remove water droplets from the steam and the cycle through the waterwalls is repeated. This process is known as natural circulation.

The boiler furnace auxiliary equipment includes coal feed nozzles and igniter guns, soot blowers, water lancing and observation ports (in the furnace walls) for observation of the furnace interior. Furnace explosions due to any accumulation of combustible gases after a trip-out are avoided by flushing out such gases from the combustion zone before igniting the coal.

The steam drum (as well as the superheater coils and headers) have air vents and drains needed for initial startup. The steam drum has internal devices that removes moisture from the wet steam entering the drum from the steam generating tubes. The dry steam then flows into the superheater coils.

Fossil fuel power plants can have a superheater and/or reheater section in the steam generating furnace. Nuclear-powered steam plants do not have such sections but produce steam at essentially saturated conditions. In a fossil fuel plant, after the steam is conditioned by the drying equipment inside the steam drum, it is piped from the upper drum area into tubes inside an area of the furnace known as the superheater, which has an elaborate set up of tubing where the steam vapor picks up more energy from hot flue gases outside the tubing and its temperature is now superheated above the saturation temperature. The superheated steam is then piped through the main steam lines to the valves before the high pressure turbine.

Power plant furnaces may have a reheater section containing tubes heated by hot flue gases outside the tubes. Exhaust steam from the high pressure turbine is rerouted to go inside the reheater tubes to pickup more energy to go drive intermediate or lower pressure turbines. This is what is called as thermal power.

Fuel preparation system
In coal-fired power plants, the raw feed coal from the coal storage area is first crushed into small pieces and then conveyed to the coal feed hoppers at the boilers. The coal is next pulverized into a very fine powder. The pulverizers may be ball mills, rotating drum grinders, or other types of grinders.

Some power plant burn fuel oil rather than coal. The oil must kept warm (above its pour point) in the fuel oil storage tanks to prevent the oil from congealing and becoming unpumpable. The oil is usually heated to about 100 °C before being pumped through the furnace fuel oil spray nozzles.

Boilers in some power stations use processed natural gas as their main fuel. Other power stations may use processed natural gas as auxiliary fuel in the event that their main fuel supply (coal or oil) is interrupted. In such cases, separate gas burners are provided on the boiler furnaces.

Air path
External fans are provided to give sufficient air for combustion. The forced draft fan takes air from the atmosphere and, first warming it in the air preheater for better combustion, injects it via the air nozzles on the furnace wall.

The induced draft fan assists the FD fan by drawing out combustible gases from the furnace, maintaining a slightly negative pressure in the furnace to avoid backfiring through any opening.

Auxiliary systems

Fly ash collection
Fly ash is captured and removed from the flue gas by electrostatic precipitators or fabric bag filters (or sometimes both) located at the outlet of the furnace and before the induced draft fan. The fly ash is periodically removed from the collection hoppers below the precipitators or bag filters. Generally, the fly ash is pneumatically transported to storage silos for subsequent transport by trucks or railroad cars.

Bottom ash collection and disposal

At the bottom of the furnace, there is a hopper for collection of bottom ash. This hopper is always filled with water to quench the ash and clinkers falling down from the furnace. Some arrangement is included to crush the clinkers and for conveying the crushed clinkers and bottom ash to a storage site.

Boiler make-up water treatment plant and storage
Since there is continuous withdrawal of steam and continuous return of condensate to the boiler, losses due to blowdown and leakages have to be made up to maintain a desired water level in the boiler steam drum. For this, continuous make-up water is added to the boiler water system. Impurities in the raw water input to the plant generally consist of calcium and magnesium salts which impart hardness to the water. Hardness in the make-up water to the boiler will form deposits on the tube water surfaces which will lead to overheating and failure of the tubes. Thus, the salts have to be removed from the water, and that is done by a water demineralising treatment plant (DM). A DM plant generally consists of cation, anion, and mixed bed exchangers. Any ions in the final water from this process consist essentially of hydrogen ions and hydroxide ions, which recombine to form pure water. Very pure DM water becomes highly corrosive once it absorbs oxygen from the atmosphere because of its very high affinity for oxygen.

The capacity of the DM plant is dictated by the type and quantity of salts in the raw water input. However, some storage is essential as the DM plant may be down for maintenance. For this purpose, a storage tank is installed from which DM water is continuously withdrawn for boiler make-up. The storage tank for DM water is made from materials not affected by corrosive water, such as PVC. The piping and valves are generally of stainless steel. Sometimes, a steam blanketing arrangement or stainless steel doughnut float is provided on top of the water in the tank to avoid contact with air. DM water make-up is generally added at the steam space of the surface condenser (i.e., the vacuum side). This arrangement not only sprays the water but also DM water gets deaerated, with the dissolved gases being removed by an air ejector attached to the condenser.

Thermal Power Plant

Thermal power plant is a power plant in which the prime mover is steam driven. Water is heated, turns into steam and spins a steam turbine which either drives an electrical generator or does some other work, like ship propulsion. After it passes through the turbine, the steam is condensed in a condenser and recycled to where it was heated; this is known as a Rankine cycle. The greatest variation in the design of thermal power plant is due to the different fuel sources. Some prefer to use the term energy center because such facilities convert forms of heat energy into electrical energy.

Almost all coal, nuclear, geothermal, solar thermal electric, and waste incineration plants, as well as many natural gas power plants are thermal. Natural gas is frequently combusted in gas turbines as well as boilers. The waste heat from a gas turbine can be used to raise steam, in a combined cycle plant that improves overall efficiency. Power plants burning coal, oil, or natural gas are often referred to collectively as fossil-fuel power plants. Some biomass-fueled thermal power plants have appeared also. Non-nuclear thermal power plants, particularly fossil-fueled plants, which do not use cogeneration are sometimes referred to as conventional power plants.

Commercial electric utility power stations are most usually constructed on a very large scale and designed for continuous operation. Electric power plants typically use three-phase or individual-phase electrical generators to produce alternating current (AC) electric power at a frequency of 50 Hz or 60 Hz (hertz, which is an AC sine wave per second) depending on its location in the world. Other large companies or institutions may have their own usually smaller power plants to supply heating or electricity to their facilities, especially if heat or steam is created anyway for other purposes. Shipboard steam-driven power plants have been used in various large ships in the past, but these days are used most often in large naval ships. Such shipboard power plants are general lower power capacity than full-size electric company plants, but otherwise have many similarities except that typically the main steam turbines mechanically turn the propulsion propellers, either through reduction gears or directly by the same shaft. The steam power plants in such ships also provide steam to separate smaller turbines driving electric generators to supply electricity in the ship. Shipboard steam power plants can be either conventional or nuclear; the shipboard nuclear plants are mostly in the navy. There have been perhaps about a dozen turbo-electric ships in which a steam-driven turbine drives an electric generator which powers an electric motor for propulsion.

In some industrial, large institutional facilities, or other populated areas, there are combined heat and power (CHP) plants, often called cogeneration plants, which produce both power and heat for facility or district heating or industrial applications. AC electrical power can be stepped up to very high voltages for long distance transmission with minimal loss of power. Steam and hot water lose energy when piped over substantial distance, so carrying heat energy by steam or hot water is often only worthwhile within a local area or facility, such as steam distribution for a ship or industrial facility or hot water distribution in a local municipality.